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A sys tem of differential equations is derived for the t ransient  heat conduction a s s o -  
ciated with a cooled gas turbine disk equipped with shrouded blades on a shank. 

The analysis  of the solution of the two-dimensional  t ransient  heat-conduction problem makes it pos-  
sible to decide the optimum conditions for the cooling of a turbine rotor .  We consider a var iable-prof i le  
disk having a central  orif ice and equipped with v a r i a b l e - c r o s s - s e c t i o n  shrouded blades, it may be assumed 
that the disk profile is bounded by parabolas (Fig. 1). Each blade has a shank in the root  section, in fo rmu-  
lating the problem we take into account the var ia t ion of the gas tempera ture  with the height of the cascade 
as well as the heating of the coolant air .  We also assume that the hea t - t r ans fe r  coefficient of the blade web 
depends on the longitudinal coordinate and var ies  over the contour of the profile. We take the latter effect 
into account by asse r t ing  that the hea t - t r ans fe r  coefficients involved in the boundary conditions at the fore  
and aft edges of the blade web are  determined by their own intr insic local hea t - t r ans fe r  conditions, i.e., 
by cr i t ical  relations.  We assume,  in addition, that the var ia t ion of the hea t - t r ans fe r  coefficient on the 
la tera l  surface  of the disk f rom the center to the per iphery is described by an exponential function. 

We account  for  the var ia t ion of the gas tempera ture  with the height of the cascade on the basis of the 
following considerations.  The gas in cooled turbines has a maximum tempera ture  roughly in the midsection 
of the blade web. It may be assumed,  therefore ,  that the blade itself has the maximum temperature  in this 
location. Then the heat flux ac ros s  the blade midsect ion is zero,  and if we state the boundary condition at 
this location, it should turn out to be fa i r ly  simple. Consequently, we can conditionally partit ion the entire 
working portion of the blade into two approximately equal-length parts and formulate  the problem for each 
part separately.  In this case the distribution of the gas tempera ture  over the height of the cascade can be 
described fa i r ly  s imply and without significant e r r o r  by means of an exponential function. 

In the formulat ion of the two-dimensional  heat-conduction problem the initial differential equation for 
the blade is derived f rom the heat balance equation for an e lementary  part  of the web of volume dV = 5(x, 
y)dxdy. As a result ,  in place of the function S(x) or S(y) (variation of the blade c ross  section with the x or y 
coordinate) we have a single function 5 (x, y) charac ter iz ing  the blade dimensions in the initial equation. 

On the whole, the t ransient  heat-conduction problem for the disk and lower halves of the blades, a c -  
cording to the scheme of Fig. 1, can be represented by a sys tem of two equations: 
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Fig. 1. Diagram relating to the formulation of the prob-  
lem (~3, ~4, ~5, ~ ,  ~Y, and ~8 a re  the hea t - t r ans fe r  
coefficients on the corresponding sur faces  of the disk 
and blade). 

Here t d = f(r, z, ~) and t b = f(x, y, v). 

In stating the problem for the upper halves of the blades we need only the second equation. We a re  
concerned here  only with the root  section of the blade. 

For  the disk the r coordinate coincides with the radial  direction, and z with the axial direction. For  
the blade the x coordinate coincides in direct ion with the r coordinate,  but the y coordinate is measured 
along the median of the blade c ross  section and has its own direction, which does not coincide with the z 
coordinate. If we take the curvature  of the median line into account, then over the entire length y fo rms  a 
var iable  angle with the z axis. For  the simultaneous solution of Eqs. (1) and (2) it is required to reduce 
them to coordinate sys tems  the planes o f  which coincide. This operation can be performed as follows. 
Figure 2 i l lustrates  the position of the profile orientation of the blade mounted on the disk and the relat ive 
position of the y and z axes.  The projection of the coordinate sys tem {x, y) onto the plane (r, z) with ob- 
servance  of the y-dependence of the angle q~ complicates both the fo rm of the initial blade equation and the 
solution as a whole. It is therefore  convenient to replace the angle 9, which var ies  along the median line, 
by a cer tain angle of inclination g00, which the axis of the rectif ied profile, inscribed within the l imits of the 
disk r im width, fo rms  with the z axis (Fig. 2). The angle r is not a gas-dynamic  charac te r i s t i c  of the 
cascade. It is a conditional quantity, depending only on the width of the disk r im and the length of the pro-  
file along the median line at the base of the blade, i.e., at  x = 0. This device does not incur a significant 
e r ro r ,  because in Eq. (2), i r respec t ive  of the actual configuration, the y axis is assumed to be straight,  
and we no longer include the curvature  of the median line of the profile in the actual initial equation. What-  
ever small  e r r o r  does occur is caused only by the difference in the actual distances f rom the fore edge to 
the aft edge on the concave and convex sides of the blade. It is important  to note that the replacement  of 
the true profile by its conditional counterpar t  (Fig. 2) in the formulat ion of the problem is unrelated to the 
angles of entry /~1 and exit •2 of the gas flow. It is purely of a formal  character .  Consequently, the initial 
equations (1) and (2) and the boundary conditions formulated below are  applicable to cascades  having blades 
of any profile. The influence, on the other hand, of the angles fll and fi2 and the shape of the blade profile 
on the heat t ransfer  and, hence, on the tempera ture  field of the blades is taken into account by the cr i t ical  
relat ions used to calculate the hea t - t r ans fe r  coefficients. 

The introduction of the angle ~ in the heat-conduction differential equation somewhat a l ters  the form 
of the latter. We replace y in Eq. (2) by z. According to the scheme of Fig. 2 z = y c o s  (p. It follows, 
therefore ,  that if ~ = const, Eq. (2) must be writ ten in the fo rm 
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Fig. 2. I l lustrat ion of the 
technique for  bringing the 
plane of the blade (x, y) in- 
to coincidence with the co-  
ordinate plane of the disk 
(r,  z). 

0r - "5(x, g) ~ 6(x, y) - - j~ j  ~- cos2cp ~ 6(x, g) - ~ - j  ~h [ b - - t g  (x)] ' (3) 

O~x...<l, O.~<z~bcos% ~ > 0 .  

Upon rotat ion of the coordinate plane of the blade into aligriment with the plane (r, z) we do not take 
into account the geometr ic  twist of the blade, i.e., the dependence of q~ on x. What is important  for the 
heat-conduction process  in the blade and in the disk is the matching of the temperature  fields at the june- 
tion of the blade with the disk. The var iat ion of the position of the profile of the blade c ross  section as a 
function of the x coordinate no longer affects the fo rm of the initial equation or  the final result .  In other 
words,  the important  considerat ion for the initial equation (2) is its matching with Eq. (1), and it is im-  
mater ia l  how the y axis is rotated for different c ross  sections of the blade. It is unnecessary ,  therefore ,  
to take the geometr ic  twist into account in the initial equation. 

The ser ies  of functions entering into the initial sys tem of differential equations (1) and (2) has the 
fo rm 

a3 (x)  = A1 - -  k lx ,  (4) 

6(x, g)~{(k~--k3x)exp [-- (k4 4- ksx)Y] 4- k6} g, (5) 

t~ (.)=A211 - ~xp [ -k~  (~ + x0)] }.  (6) 

The function 5(x, y) is determined for the working blades of a part icular  turbine, but its form can be 
the same for  the blades of other turbines. Only tile values of the constant coefficients change. 

Upon transi t ion f rom the y to the z coordinate Eq. (5) acquires  the somewhat different fo rm 

5 (x, V)= {(k~--k,~) exp [-- (k~ + k~) z cos ~] + k0} z cos ~. (7) 

We now formulate  the boundary conditions for the initial equations (1) and (2). The disk is cooled 
along the la teraI  surfaces  and inside the central  orif ice,  so that the boundary conditions for it a re  as fol-  
lows: 

at r = r 2: 

~ ~ [ td -  t~ (r0], (s) 
Or ~ - 2 -  

a t r = r l ,  x = 0 :  

at z = ft (r)" 

Otd 
Or = Clld 4- Cztb-~ Ca, (9) 

0td ct8 (r)[ td--  tm (P)], (10) 
on ~ - d  �9 
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Fig. 3. D i a g r a m  re l a t ing  to the fo rmu la t i on  of the 
h e a t - b a l a n c e  equat ions  a t  the junct ion of a blade 
with the disk. 

at  z = f2(r): 

In Eqs.  (8)-(11) 

ot d ~ ( r )  [ t d -  t~, (~)]. 
On )~ d 

c% ( r )=a  z (r)=~zd(r)=cz d (r2) ek,,( . . . .  ) 

r e p r e s e n t s  the dependence  of the h e a t - t r a n s f e r  coef f ic ien ts  at  the fo re  and af t  l a t e ra l  s u r f a c e s  on the 
rad ius ;  

h (r)=Zol - -  kl~ (r - -  to) ~, 

f2 (r) = Zo~ + k n  (r - -  ro) ~ 

a r e  funct ions  de l imi t ing  the d i sk  profi le.  

In the l a t t e r  funct ions  

Also  

to= [6 2 + k~1 ( r~ - -  r~)]/2k n (rx - -  r~), 

ZOI = k l l  ( r  1 - -  1"0) 2 and Z02~51 - -  Z01. 

(11) 

(12) 

(13) 

(14) 

(15) 

(1~) 

t ~  ( r ) = t ~  (r~) + k ~  ( r - -  r~), (17) 

t~ (r) =t~,-(r,) + k~. (r - -  r~) (18) 

a r e  funct ions de sc r ib ing  the va r i a t i on  of the a i r  t e m p e r a t u r e  dur ing mot ion  along the l a te ra l  su r f ace  of the 
d i sk  f r o m  the cen te r  toward  the pe r iphery .  Here  

tal (r2)=ta~ (r2)=ta(r2). (19) 

The boundary  condi t ion (9) is obtained by solving the hea t -ba l ance  equat ion fo r  unit t ime:  

dQ 1 ~_dQ s ~_ dQa, (20) 

whe re  

dQl=~b tb(O, z, ~) - - td ( r  1, z, T) 5,~dz 
h 
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is  the heat  de l ive red  f r o m  the b lades  to the d isk  th rough  an e l e m e n t a r y  c r o s s  sec t ion  of the shank of each 
blade (Fig. 3); 

dQ2=% [td (rl, z, ~)---{a (q)] blndz 

is  the heat  de l ivered  f r o m  an  e l e m e n t a r y  outer  s u r f a c e  of the r i m  of d imens ion  bldz by the coolant  a i r  in -  
jected th rough  the duct  in the lower  par t  of the b lades  ~-a(rt) = 0.5[tat(r1) + ta2(rl)]); 

Ot a(r 1, z, -c) 
dQ3 =--~, d Or ~32nr~dz 

is  the heat  t r a n s p o r t e d  to the d i sk  f r o m  the p e r i p h e r y  th rough  the annu la r  su r face .  

P e r f o r m i n g  a subs t i tu t ion  and t r a n s f o r m a t i o n ,  we deduce Eq. (9) f r o m  (20), where  

C 1 = -  + %bj ~d~-~rl ; 
(21) 

~bfs r l  asbln 
C2 = h Zd132~rl ; C~ = )~d~2~rl fa(rl). 

On the le f t -hand  s ides  of the boundary  condi t ions  (10) and (11) the t e m p e r a t u r e  g rad ien t  is  e x p r e s s e d  
as  the de r iva t ive  of t with r e s p e c t  to the n o r m a l  to the l a t e r a l  su r f ace  of the disk. This is r ea sonab le ,  s ince  
we spec i fy  the condi t ion on an a r b i t r a r i l y  or ien ted  bounda ry  of the d isk  c r o s s  sec t ion  r e l a t ive  to the c o o r d i -  
hate sy s t em.  The t r ans i t i on  f r o m  0td/0n to 0td/0Z in the c o u r s e  of solut ion of the p rob l em can be r ea l i zed  
on the bas i s  of the r e l a t i o n  

Ot d Ot d 1 
0--n- = O ) -  " cos (n, z) (22) 

Fo r  the lower  par t  of the blade in contac t  with the d isk  the boundary  condit ions a r e  as  fol lows:  

at  x = 0, r = r l :  

a--(t b- = c~t a + c~tb-c~;  (23) 
Ox 

at x = / :  

orb (24) 
0--x- = o;  

a t y = O  ( z=O) :  
Orb c~s (X, O) l , 

O--z - =  Z b costp [tb--tg(X)]; (25) 

a t y = b  (z = b c o s ~ )  

at b % (x, b) 1 it b--  t~ (x)]. (26) 
Oz ~ b cos (9 

In Eqs.  (23)-(26), o~3(x , 0) and a3(x , b) a r e  the h e a t - t r a n s f e r  coef f ic ien ts  at  the fo re  and aft edges .  
By the condi t ion of the p r o b l e m  a 3 does not depend on y, but fo r  the en t i r e  s u r f a c e  a long the concave  and 
convex s ides  of the blade it wiI1 have one value,  while fo r  the fo re  and aft edges  of the blade it will  have 
d i f fe ren t  va lues ,  in a c c o r d a n c e  with the r e c o m m e n d a t i o n s  of [2]. 

* has  been  d i sp layed  above [Eq, (6)]. The funct ion tg 

The bounda ry  condi t ion (23) is obtained f r o m  the hea t -ba l ance  equat ion wr i t t en  for  the c r o s s  sec t ion  
coinc id ing  with the coord ina te  x = 0 (Fig. 3): 

dQ~ = dQ~ + dQ6. (27) 

Here  

atb 
dQ~=)~b ~ nS(O, z)dz 
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is the heat admitted f rom an element  of the working part  of the blade of c ross  sect ion 5(0, z)dz to its shank 
per unit t ime; 

dQs=~b tb(0, z, ~)--td(q,  z, ~) h nSsdz 

is the heat del ivered f rom the c ross  sect ion x = 0 to the blade shank through the a rea  5sdz; 

dQ6=2~z5 [bo (0, z , - r ) -  tb(0, z, x)--td(rl'2 z,-r) _ ~_a(rl ) ] nhdz 

is the heat del ivered by the coolant a i r  f rom the la teral  sur faces  of the shank. 

w e  obtain Eq. (23) by substituting dQ4, d%,  and dQ6 into it and instituting the appropr ia te  t r ans -  
formations.  The constants C4, C5, and C 6 a re  determined by the following express ions  in this case: 

( a s h  ~bSS) 1 
C4 = 2 h ~b 5(0, z) ; 

( ~ h  ~b,~S ) 1 ,:zsh 
c~= 2 + U ~b~(o,z) ; co= ~,bs(o,z) ~ (q) 

We adopt the following as the initial condition for  the given sys tem of bodies (disk plus blades): 

t d(r, z, O)=tb(X, y, o)=to. 
It is impossible  to solve the stated problem in general  form.  Numerical  methods a re  the most  sui t -  

able here .  In the given case the use of the net-point  method enabled us to obtain for  the stated problem a 
numer ica l  solution confirming the validity of all  the basic cons idera t ions  advanced above. 
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N O T A T I O N  

are  the gas-f low ent ry  and exit angles measured  between the d i rec t ion of motion of the 
gas and the front  of the blade cascade;  
a re  the thermal  diffusivit ies of the disk and blade; 
is the time; 

a re  the thermal  conductivit ies,  specif ic  heats,  and densitfes of the disk and blades; 
is the stagnation t empera tu re  of the gas flow; 
is the t empera tu re  of the coolant a i r ;  
is the blade web thickness; 
is the length of the median line of the profile;  
is the length of the lower root  section of the blade web, equal to half of the total blade 
length; 
is the thickness of the blade shank; 
is the distance between the shanks of adjacent blades, measured  along the outer cyl indrical  
surface  of the disk r im;  
is the number of blades; 
is a coefficient accounting for the thermal  res i s tance  of the blade root  fittings; 
is the height of the blade shank; 
a re  constants.  
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